Discriminative Transformation Learning for Fuzzy Sparse Subspace Clustering

نویسندگان

  • Zaidao Wen
  • Biao Hou
  • Qian Wu
  • Licheng Jiao
چکیده

This paper develops a novel iterative framework for subspace clustering (SC) in a learned discriminative feature domain. This framework consists of two modules of fuzzy sparse SC and discriminative transformation learning. In the first module, fuzzy latent labels containing discriminative information and latent representations capturing the subspace structure will be simultaneously evaluated in a feature domain. Then the linear transforming operator with respect to the feature domain will be successively updated in the second module with the advantages of more discrimination, subspace structure preservation, and robustness to outliers. These two modules will be alternatively carried out and both theoretical analysis and empirical evaluations will demonstrate its effectiveness and superiorities. In particular, experimental results on three benchmark databases for SC clearly illustrate that the proposed framework can achieve significant improvements than other state-of-the-art approaches in terms of clustering accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Transformations for Clustering and Classification Learning Transformations for Clustering and Classification

A low-rank transformation learning framework for subspace clustering and classification is here proposed. Many high-dimensional data, such as face images and motion sequences, approximately lie in a union of low-dimensional subspaces. The corresponding subspace clustering problem has been extensively studied in the literature to partition such highdimensional data into clusters corresponding to...

متن کامل

Learning Robust Subspace Clustering

We propose a low-rank transformation-learning framework to robustify subspace clustering. Many high-dimensional data, such as face images and motion sequences, lie in a union of low-dimensional subspaces. The subspace clustering problem has been extensively studied in the literature to partition such highdimensional data into clusters corresponding to their underlying low-dimensional subspaces....

متن کامل

Building topographic subspace model with transfer learning for sparse representation

In this paper, we propose a topographic subspace learning algorithm, named key-coding learning, which utilizes irrelevant unlabeled auxiliary data to facilitate image classification and retrieval tasks. It is worth noticing that we do not need to assume the auxiliary data follows the same class labels or generative distribution as the target training data. Firstly, the subspace model is learnt ...

متن کامل

Learning transformations for clustering and classification

A low-rank transformation learning framework for subspace clustering and classification is here proposed. Many high-dimensional data, such as face images and motion sequences, approximately lie in a union of low-dimensional subspaces. The corresponding subspace clustering problem has been extensively studied in the literature to partition such highdimensional data into clusters corresponding to...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on cybernetics

دوره   شماره 

صفحات  -

تاریخ انتشار 2017